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The influence of Poisson contraction on matrix
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The influence of Poisson contraction on the stresses for propagating a semi-infinite
fiber-bridged crack in unidirectional fiber reinforced ceramics is studied in this paper. The
situation of bonded fibers that is subjected to compressive pressure due to thermal
expansion mismatch between the fiber and the matrix is considered in the present analysis.
The results show that the Poisson contraction has profound effects on the matrix cracking
stress predictions in the ceramic matrix composites, especially for the composites with high
coefficient of friction. The Poisson contraction effects can be evidenced by the comparison
of the present analysis with the Aveston, Cooper and Kelly (ACK) model. The roles played
by the interfacial properties of the interfacial bonding energy and the coefficient of friction
on the stresses for matrix cracking are discussed. C© 2001 Kluwer Academic Publishers

1. Introduction
The inherently brittle ceramics can be toughened with
the reinforcements such as long fibers or short whiskers.
In a properly fabricated ceramic matrix composite, the
initial matrix crack should be arrested or deflected by
the fiber/matrix interface. For the unidirectional long
fiber reinforced ceramics that are loaded in fiber ax-
ial direction, the initial matrix crack may result in a
fiber-bridged crack transverse to the fibers. Finally, the
repeated fiber-bridged cracks may be produced at reg-
ular spacing throughout the specimen before the final
failure of the composite. Apparently, the composites
possessing such multiple-matrix cracking exhibit more
ductility and toughness than the monolithic ceramics.

The phenomenon of matrix cracking in brittle ma-
trix composites has been a research subject for long
standing. For theoretical modeling, different approach
methodologies were adopted for predicting the critical
stress to propagate a fiber-bridged crack. They include
the energy balance approach (Aveston, Cooper and
Kelly (ACK) [1]; Aveston and Kelly [2]; Budiansky,
Hutchinson and Evans (BHE) [3], Chiang [4]), the
distributed spring model (Marshall, Cox and Evans
[5]; McCartney [6], Chiang, Wang and Chou [7]) and
the continuous distributions of dislocation loops model
(Meda and Steif [8]), etc. In the analyses of Ref. [1–7],
the simple shear lag models which neglected the
Poisson’s effects were adopted to evaluate the stress-
strain fields of the fiber and the matrix. The predicted
matrix cracking stresses are closely related to the fric-
tional shear stress that is assumed as a material con-
stant. However, from the experimental study by Singh
[9], it was reported that there was little correlation be-
tween the matrix cracking stresses and the frictional
shear stress. Therefore, the exact roles played by the

frictional shear stress on matrix cracking need to be
further explored.

During matrix cracking, the bridged fibers should
carry the additional load that was originally carried
by the matrix. As a result, the additional Poisson con-
traction on the bridged fibers imposes the tensile force
on the fiber/matrix interface. For the composites that
are originally subjected to compressive pressure on the
fiber/matrix interface, the imposed tensile force causes
a reduction in the compressive pressure. According to
the Coulomb friction low, this will result in a decrease
in the frictional shear stress that changes the load trans-
fer between the fiber and the matrix. Thus, it is expected
that the additional Poisson contraction on the bridged
fibers will cast an influence on the matrix cracking
behaviors.

The intent of this paper is to evaluate the influence
of Poisson contraction on the stresses for propagating
a semi-infinite fiber-bridged crack in the unidirectional
fiber reinforced ceramics. After the fiber/matrix inter-
face is debonded in the wake of a fiber bridged crack,
it is subjected to frictional resistance that is assumed
to follow a Coulomb friction law. A shear-lag model,
which includes the Poisson’s effects and the friction in
the debonded region, is adopted to calculate the stress
and strain fields in the fiber and the matrix. The in-
terfacial debonding criterion used in the present anal-
ysis is based upon the fracture mechanics approach,
by which the debonding length in the crack-wake can
be obtained. Subsequently, by using the energy bal-
ance approach, the formulation of the steady-state ma-
trix cracking stress for propagating of a semi-infinite
fiber-bridged crack is derived. The results show that
the Poisson contraction has profound influences on
the matrix cracking stress predictions in the ceramic
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matrix composites, especially for the composites with
high coefficient of friction. As compared to the ACK
results for the purely frictional interface, the present
model predicts the small matrix cracking stresses and
the discrepancy between two models enlarges as the
frictional coefficient increases. The presence of the in-
terfacial bonding energy will increase the matrix crack-
ing stresses and the influence of Poisson contraction on
the matrix cracking stress predictions is similar to the
case of the purely frictional interface. Furthermore, the
predicted matrix cracking stresses of the bonded inter-
face are shown to be less sensitive to the coefficient of
friction than those of the purely frictional interface.

2. Fiber-matrix stress analysis
A unidirectional fiber reinforced ceramic with fiber vol-
ume fraction cf loaded by a remote uniform stress σ nor-
mal to a semi-infinite crack is shown in Fig. 1. Here,
three regions are identified with respect to the fiber-
bridged crack. In the downstream region, which is suf-
ficiently behind the crack tip, the stress and strain fields
are uniform and the debonding length becomes constant
with respect to the crack plane. In the transient region,
the stress and strain fields are complex on both sides of
the crack tip. It may be readily stated that the debonding
length is diminishing as the fiber is approached from the
downstream side to the crack tip. The upstream region
is sufficiently ahead of the crack tip so that the stress
and strain fields are again uniform.

The Poisson contraction effects on the fiber debond-
ing and pullout behaviors in brittle matrix composites
have been analyzed by Geo, Mai and Cotterell [10]
and Hutchinson and Jensen [11]. It was adopted in
their analyses that the axial and radial stresses in the
debonded region transverse to the fiber can be charac-
terized by a Lamé formulation. It was verified by nu-
merical analysis [11] that the approximation by a Lamé
solution is valid if the interfacial shear stress is small
compared to the fiber axial stress. Therefore, the ap-
proximation of stress and strain by a Lamé approach
is also adopted in the present analysis and the Lamé
formulation of this section closely follows the analysis
of Geo et al. [10].

Figure 1 Schematic representation of crack-tip and crack-wake deb-
onding.

2.1. Downstream stresses
The free body diagram of the isolated composite cylin-
der model in the downstream region is illustrated in
Fig. 2a, where the fiber closure traction that causes in-
terfacial debonding between the fiber and matrix over
the debonding length ld. The radius of isolated compos-
ite cylinder R is defined by

R = a/c1/2
f (1)

where a is the fiber radius. The total axial stress in the
downstream region satisfies

cfσf(z) + cmσm(z) = σ (2)

where σf(Z ) and σm(Z ) denote the fiber and the matrix
axial stresses, respectively.

Taking an arbitrary cross-section of the isolated com-
posite cylinder (see Fig. 2b), we denote σr and σθ as the

Figure 2 An isolated composite cylinder model.
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radial and circumferential stresses. Under the assump-
tion of isostrain in the fiber and matrix domains, the
stress-strain relationships of the fiber and matrix are
given by

εf = (1/Ef)[σfνf − (σr + σθ )] (3)

εm = (1/Em)[σm − νm(σr + σθ )] (4)

where ε, E and ν denote, respectively, the axial strain,
Young’s modulus and Poisson’s ratio. The subscripts f
and m indicate the fiber and matrix, respectively.

The boundary conditions of the isolated composite-
cylinder model depicted in Fig. 2b are

(σr)r=R = 0 (5)

(σr)r=a− = (σr)r=a+ (6)

(ur)r=a− = (ur)r=a+ (7)

where u indicates the displacement.
The radial stress σr and the circumferential stress σθ

can be solved by the classical Lamé formulation [12]
with the satisfaction of the boundary conditions given
by Equations 5–7. Thus, the radial stress σr and the
circumferential stress σθ in the fiber cylinder domain
are given by

σr = σθ = aνfσf − νmσm

1 + νm + 2γ + α(1 − νf)
= q0 (8)

where

α = Em/Ef (9)

and

γ = cf/cm (10)

Accordingly, the radial stress σr and the circumfer-
ential stress σθ in the matrix ring domain are obtained:

σr = γ R2q0

r2
− γ q0 (11)

σθ = −γ R2q0

r2
− γ q0 (12)

Then, the stress-strain relationships of Equations 3
and 4 become

εf = (1/Ef)[σf − 2νfq0] (13)

εm = (1/Em)[σm + 2νmγ q0] (14)

In the length z ≥ ld, where no debonding has yet oc-
curred between the fiber and matrix, the fiber axial
strain equals to the matrix axial strain. Solving Equa-
tions 13 and 14 and Equation 2, the axial stresses of
fiber and matrix in the length z ≥ ld are given by

σ D
f = 1 − 2νmκ

cm[α + γ − 2κ(ανf + γ νm)]
σ (15)

σ D
m = 1

cm

[
1 − γ (1 − 2νmκ)

α + γ − 2κ(ανf + γ νm)

]
σ (16)

where

κ = ανf + γ νm

1 + νm + 2γ + α(1 − νf)
(17)

In the length 0 ≤ z < ld, the fiber/matrix interface is
debonded and resisted by a frictional force. If the
fiber/matrix interface is under compressive pressure,
the frictional shear stress τs can be assumed to follow
a Coulomb friction law:

τs = µ(qi − q0) (18)

where µ is the coefficient of friction; and qi is the initial
interface pressure that occurs during fabrication of the
composite (e.g. different thermal expansion of fiber and
matrix) and q0 is the tensile force due to the additional
Poisson contraction of the fiber that causes a reduction
in compressive stress.

The force equilibrium equation for a differential
length of fiber in the debonded region is given by

dσf

dz
= −(2/a)τs (19)

The boundary conditions at the crack plane z = 0 are

σf(0) = σ

cf
(20)

σm(0) = 0 (21)

Solving Equations 2, 8, 18 and 19 with the bound-
ary conditions given by Equations 20 and 21, the axial
stresses of the fiber and the matrix and the frictional
shear stress in the debonding length are given by

σ D
f = σ

cf
− ανf

cf(ανf + γ νm)
(σ̄ − σ )(eλz − 1) (22)

σ D
m = ανf

cm(ανf + γ νm)
(σ̄ − σ )(eλz − 1) (23)

τ D
s = aανfλ

2cf(ανf + γ νm)
(σ̄ − σ )eλz (24)

where

λ = 2µκ/a (25)

and

σ̄ = cfqi

ανf
[1 + νm + 2γ + α(1 − νf)] (26)

Let wf(z) and wm(z) denote the fiber and matrix axial
displacements measured from the boundary z = ∞ and
set wf(∞) = wm(∞) = 0. From Equations 13 and 14,
the stress-strain relationships of the fiber and matrix
can be expressed as

εf = dwf

dz
= 1

Ef
[(1 − νfκ)σf + κ0σ ] (27)

εm = dwm

dz
= 1

Em
[(1 − νmκ)σm + ακoσ ] (28)
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where

κ0 = 2νfνm

cm[1 + νm + 2γ + α(1 − νf)]
(29)

Substituting Equations 15 and 16 and 22 and 23 into
Eqs. (27-28), the axial displacements of the fiber and
matrix in the debonding length, 0 ≤ z < ld, are ob-
tained by integrating Equations 27 and 28: (for L →
∞)

wf(z) = −1 − 2νfκ

Ef

{
σ

cf
(ld − z)

− ανf(σ̄ − σ )

cf(ανf + γ νm)

[
eλld − eλz

λ
− (ld − z)

]

+ (1 − 2νmκ)(L − ld)σ

cm[α + γ − 2κ(ανf + γ νm)]

}
− κ0(L − z)σ

Ef

(30)

wm(z) = −1 − 2νmκ

Em

×
{

ανf(σ̄ − σ )

cm(ανf + γ νm)

[
eλld − eλz

λ
− (ld − z)

]

+ α(1 − 2νfκ)(L − ld)σ

cm[α + γ − 2κ(ανf + γ νm)]

}
− κ0(L − z)σ

Ef

(31)

Then, the relative axial displacement u(z) between the
fiber and matrix in the debonding length, 0 ≤ z < ld,
is obtained by

u(z) = |wf(z) − wm(z)| = −ανf(σ̄ − σ )

×
[

eλld − eλz

λ
− (ld − z)

][
1 − 2νmκ

cm Em(ανf + γ νm)

+ 1 − 2νfκ

cf Ef(ανf + γ νm)

]
+ 1 − 2νfκ

cf Ef
(ld − z)σ

(32)

2.2. Upstream stresses
The upstream region (see Fig. 1) is so far away from
the crack tip that the stress and strain fields are also
uniform. Thus, the fiber and matrix have the same axial
strains and the fiber and matrix axial stresses are given
by

σU
f = 1 − 2νmκ

cm[α + γ − 2κ(ανf + γ νm)]
σ (33)

σU
m = 1

cm

[
1 − γ (1 − 2νmκ)

α + γ − 2κ(ανf + γ νm)

]
σ (34)

These stresses are the same as those of the bonded
length in the downstream region, given by Equations 15
and 16.

3. Interfacial debonding criterion
There are two different approaches to the crack-wake
debonding problem, namely, the shear stress approach
and the fracture mechanics approach. The shear stress
approach is based upon a maximum shear stress crite-
rion in which interfacial debonding occurs as the shear
stress in the fiber/matrix interface reaches the shear
strength of interface. On the other hand, the fracture
mechanics approach treats interfacial debonding as a
particular crack propagation problem in which interfa-
cial debonding occurs as the strain energy release rate
of interface attains the interfacial debonding toughness.
Following the arguments of Gao, Mai and Cotterell [10]
and Stang and Shah [13] that the fracture mechanics ap-
proach is preferred to the shear stress approach for the
interfacial debonding problem, the fracture mechanics
approach is adopted in the present analysis.

A general case of a cracked body is schematically
shown in Fig. 3, in which a volume V is loaded by
tractions T and τs on the surfaces ST and SF with cor-
responding displacements dw and du, respectively. As
the crack grows dA along the fractional surface SF, the
fracture criterion is proposed by [10]

ζd = ∂

2∂ A

∫
ST

T dw ds − ∂

2∂ A

∫
SF

τS du ds (35)

where ζd is the interfacial debonding toughness. For
the interfacial debonding problem (see Fig. 2a), the
debonding process can be regarded as the crack prop-
agation along the fiber/matrix interface. Thus, we have
A = 2πald, ds = 2πadz and T = σ/cf, which is the fiber
stress at the crack plane. In Equation 35, u(z) is given
by Equation 32 and

∫
ST

dw = −wf(0) is given by Equa-
tion 30. Then, the debonding criterion of Equation 35
becomes

ζd = aT

4

∂wf(0)

∂ld
− 1

2

∫ ld

0
τs

∂u(z)

∂ld
dz (36)

Taking the derivatives of wf(0) and u(z) with respect to
ld, Equation 36 becomes

[
ανf(1 + β)(σ̄ − σ )

ανf + γ νm
(eλld − 1) − σ

]2

= 4c2
f Ef(1 + β)

a(1 − 2νfκ)
ζd (37)

Figure 3 Schematic showing of a general case of a crack body.
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where

β = γ (1 − 2νmκ)

α(1 − 2νfκ)
(38)

For the condition of frictionless interface in the debond-
ing length (i.e., µ = 0), the debonding stress σ0 is given
by Equation 37 with the substitution of λ = 0:

σ0 =
[

4c2
f Ef(1 + β)

a(1 − 2νfκ)
ζd

]1/2

(39)

The debonding length ld can be obtained from Equa-
tion 37 and expressed as a function of σ0:

ld =
log

[
(ανf + γ νm)(σ − σ0)

ανf(1 + β)(σ̄ − σ )
+ 1

]
λ

(40)

For the case of purely frictional interface (i.e., ζd = 0),
the debonding length ld reduces to the slipping length
ls of unbonded composite:

ls =
log

[
(ανf + γ νm)σ

ανf(1 + β)(σ̄ − σ )
+ 1

]
λ

(41)

4. Matrix cracking stress
The energy relationship to evaluate the steady-state ma-
trix cracking stress for brittle matrix composites is ex-
pressed as (Refs. [3, 1])

1

2

∫ ∞

−∞

[
cf

(
σU

f − σ D
f

)(
εU

f − εD
f

) + cm
(
σU

m − σ D
m

)
× (

εU
m − εD

m

)]
dz = cmζm + 4cf(ld/a)ζd (42)

qi = cm Em[1 + νf + (νm − νf)cf Ef/E](αf − αm)�T

2
{
1 − (1 − E/Ef)(1 − νf)/2 + cm(νm − νf)/2 − (E/Ef)[νf + (νm − νf)cf Ef/E]2

} (49)

where ζm is the fracture toughness of matrix.
Substituting the strains of the fiber and matrix of

Equations 27 and 28 into Equation 42, the formulation
of steady-state matrix cracking stress becomes

∫ ld

0

[
cf(1 − 2νfκ)

Ef

(
σU

f − σ D
f

)2 + cm(1 − 2νmκ)

Em

× (
σU

m − σ D
m

)2
]

dz = cmζm + 4cf(ld/a)ζd (43)

Further, substituting the downstream stresses of fiber
and matrix given by Equations 22 and 23 and the up-
stream stresses of the fiber and matrix given by Equa-
tions 33 and 34 into Equation 43, the energy balance
equation leads to the form of

σ 2 − 2φ(ψ1 + φψ2)σ̄

1 + 2φψ1 + φ2ψ2
σ + φψ2σ̄

2 − A

1 + 2φψ1 + φ2ψ2
= 0

(44)
where

φ = ανf(1 + β)

ανf + γ νm
(45)

ψ1 = eλld − 1

λld
− 1 (46)

ψ2 = e2λld + 3

2λld
− 2

eλld

λld
+ 1 (47)

and

A = cfcm Ef Em(1 + β)2

cf Ef(1 − 2νfκ) + cm Em(1 − 2νmκ)

×
(

cmζm

ld
+ 4cfζd

a

)
(48)

Substituting the debonding length ld of Equation 40
into Equation 44, the critical stress for matrix cracking
σcr can be solved by using the numerical root-finding
method.

5. Results and discussion
The SiC/borosilicate composite is used for the case
study and its material properties are listed in Table I.

The initial interface pressure qi that produced during
fabrication is assumed mainly due to the difference of
the thermal expansion between the fiber and matrix and
it can be approximated by [3]

where �T is the temperature change; and αf and αm
are the linear thermal expansion coefficients over the
range �T .

TABLE I Properties of SiC/borosilicate composite

SiC(SCS-6 AVCO)/
borosilicate#

Ef 400 GPa
Em 63 GPa
νf 0.2
νm 0.3
a 70 µm
ζm 8.92 J/m2

αf(radial) 2.6 × 10−6/◦C
αm 3.2 × 10−6/◦C
�T −500◦C

#Data from Ref. [14]
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Figure 4 Matrix cracking stress σcr vs. coefficient of friction µ of un-
bonded interface for SiC/borosilicate at cf = 0.3.

For the unbonded fiber (i.e., ζd = 0) but susceptible
to frictional resistance in the slipping length, a well-
known formulation of critical matrix cracking stress
has been derived by ACK [1]:

σcr =
(

6cf Ef Eτs

acm E2
m

ζm

)1/3

(50)

where E is the composite axial modulus and approxi-
mated by rule-of-mixtures E = cf Ef + cm Em. The ACK
model neglects the effects of Poisson contraction such
that the additional interfacial tensile stress q0 could not
be accounted for in their analysis. Therefore, the fric-
tional shear stress τs given by Equation 18 reduces to
µqi for the ACK model.

The Poisson contraction effects on the critical
stresses for matrix cracking can be depicted in Fig. 4,
where the critical matrix cracking stresses σcr are plot-
ted as a function of the coefficient of friction µ along
with the ACK predictions. The difference of the σcr
predictions between two models illustrates the Poisson
contraction effects on the matrix cracking stress predic-
tions. As shown in Fig. 4, the difference of the σcr pre-
dictions between two models enlarges as the frictional
coefficient µ increases. This implies that the Poisson
contraction has more profound influence on the matrix
cracking stress for the composite with high frictional
coefficient µ. Fig. 5 plots the slipping lengths corre-
sponding to the matrix cracking stresses of the present
and ACK models depicted in Fig. 4. The present anal-
ysis predicts the longer slipping lengths than those of
the ACK model. This phenomenon can be explained by
the fact that the additional Poisson contraction of the
fiber imposes a tensile force on the interface that causes
a reduction in the interfacial compressive pressure and
consequently results in the longer slipping lengths.

The influence of the relative matrix load carrying
capability on the matrix cracking stresses is illustrated
in Fig. 6, where the σcr vs. Em/Ef at Ef = 400 Gpa
and µ = 1 is plotted along with the ACK prediction.
The present and the ACK predictions show the same
trend that σcr decreases as the relative stiffness Em/Ef
increases. Fig. 6 also indicates the discrepancy between
two models enlarges as the relative stiffness Em/Ef
decreases. It implies that the composite with smaller
matrix stiffness has more profound Poisson contraction
than the one with higher matrix stiffness.

Figure 5 Slipping length ls vs. coefficient of friction µ for SiC/
borosilicate composite at cf = 0.3, d = 2a.

Figure 6 Matrix cracking stresses vs. Em/Ef of unbonded interface for
SiC/borosilicate at Ef = 400 Gpa and µ = 1.

Figure 7 Matrix cracking stress vs. coefficient of friction µ at different
ζd/ζm for SiC/borosilicate composite at cf = 0.3.

The influences of interfacial debonding toughness
and frictional shear stress on the matrix cracking
stresses are illustrated in Fig. 7, in which the matrix
cracking stresses are plotted as a function of frictional
coefficient for different relative interfacial debonding
toughnesses, ζd/ζm. Budiansky, Hutchinson and Evans
[3] indicated that the interfacial debonding toughness
ζd should be less than one-fifth of the matrix fracture
toughness ζm, otherwise the matrix crack tip fractures
the fiber rather than deflects along the fiber/matrix in-
terface. Therefore, the maximum relative interfacial
debonding toughness, ζd/ζm, is chosen as 0.2 in the
present analysis.

Similarly to the unbonded interface (i.e., ζd/ζm = 0),
the matrix cracking stresses of the bonded interfaces
of ζd/ζm = 0.1 and 0.2 increase as function of fric-
tional coefficient, as depicted in Fig. 7. The presence of

3244



interfacial bonding energy increases the matrix crack-
ing stress. Moreover, the matrix cracking stress of the
bonded interface becomes less sensitive to the fric-
tional coefficient as compared to the unbonded inter-
face. Singh [9] has experimentally studied the influ-
ence of frictional shear stress on the stress for matrix
cracking by using fiber coating to obtain different fric-
tional shear stress. Singh reported that there was little, if
any, correlation between the frictional shear stress and
the matrix cracking stress. In fact, the purely frictional
interface is difficult to produce. Even the composite
is slightly bonded, the matrix cracking stress will be-
come less sensitive to the interfacial shear stress and the
present analysis show the more close correlation with
Singh’s experimental observations. However, more ex-
perimental works are definitely needed to verify the
relation between the matrix cracking stress and the fric-
tional shear stress.

Fig. 8 illustrates the normalized ld vs. µ predictions
for different relative interfacial debonding toughness,
ζd/ζm. The debonding length is shown to decrease as
ζd/ζm and µ increase. However, the influence of ζd/ζm
and µ on the debonding length is diminished as ζd/ζm
and µ increase.

The results of the ACK model for purely frictional
interface and the BHE model for the perfectly bonded
interface are often quoted as the lower and upper bound
for the matrix cracking stress predictions. In the present
analysis, the matrix cracking stress corresponding to
unbonded and frictionless interface (i.e., ζd = 0 and
µ → 0) can be considered as the lower bound predic-
tion. On the other hand, the matrix cracking stress corre-

Figure 8 Debonging length vs. coefficient of friction µ at different
ζd/ζm for SiC/borosilicate composite at cf = 0.3.

Figure 9 The upper and lower bound predictions of matrix cracking
stress for SiC/borosilicate composite.

sponding to the maximum interfacial debonding tough-
ness (i.e., ζd/ζm = 0.2) with high frictional shear stress
can be regarded as the upper bound prediction. The
lower and upper bound predictions of matrix cracking
stresses for SiC/borosilicate are illustrated in Fig. 9,
where the ACK result with an assumed µ = 0.1 and the
BHE result are also plotted for comparison. It is noted
that µ = 3 represents a high frictional shear stress for
SiC/borosilicate composite. It is shown in Fig. 9 that
the unbonded interface with the small frictional coeffi-
cient can be well predicted by the ACK model and the
perfectly bonded interface by the BHE model overes-
timates the upper bound matrix cracking stress predic-
tions. Furthermore, the interface with the intermediate
debonding toughness can be predicted by the present
analysis.

6. Conclusions
1. In this paper, the effects of the Poisson contraction

on matrix cracking stresses have been analyzed for uni-
directional fiber reinforced ceramics. It has been shown
that the Poisson contraction has profound influences on
the matrix cracking stresses for ceramic matrix com-
posites, especially for composites with high frictional
coefficient.

2. At the on-set of matrix cracking, the fibers bridged
the matrix crack should carry the additional load orig-
inally borne by the matrix. As a result, the additional
Poisson contraction on the bridged fiber imposes a ten-
sile force on the fiber/matrix interface that causes a
reduction in compressive pressure (i.e., decrease fric-
tional shear stress). Consequently, this results in the
smaller matrix cracking stresses and longer slipping
lengths, as depicted in Figs 4 and 5.

3. The interfacial debonding criterion used in the
present analysis is based upon the fracture mechan-
ics approach, by which the debonding length in the
crack-wake can be obtained. Subsequently, by using
the energy balance approach, the formulation of the
steady-state matrix cracking stress can be derived and
is given by Equation 44.

4. The presence of interfacial bonding energy in-
creases the matrix cracking stress. Furthermore, the
predicted matrix cracking stresses are shown to be less
sensitive to the frictional coefficient as compared to the
unbonded composite. This phenomenon was also ob-
served by Singh [9].
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